国产三级精品三级在线观看,国产高清无码在线观看,中文字幕日本人妻久久久免费,亚洲精品午夜无码电影网

材料預(yù)測和設(shè)計:無需編程的AI平臺!

材料基因工程的研發(fā)理念深刻變革了材料研發(fā)范式,提高了新材料的研發(fā)效率,降低了研發(fā)成本。材料基因工程研發(fā)理念的核心是材料信息學(xué),人工智能技術(shù)是材料信息學(xué)的核心工具。

材料預(yù)測和設(shè)計:無需編程的AI平臺!
Fig. 1 Overview and architecture of MLMD.

來自上海大學(xué)材料基因組工程研究院的張統(tǒng)一院士團(tuán)隊,開發(fā)了MLMD (matdesign.top),一個面向材料設(shè)計的無需編程AI平臺,平臺可以實現(xiàn)材料的高通量篩選和代理優(yōu)化,進(jìn)行單目標(biāo)或者多目標(biāo)的材料設(shè)計。同時可以針對材料領(lǐng)域小數(shù)據(jù)問題,開發(fā)了基于貝葉斯的主動學(xué)習(xí)和基于遷移學(xué)習(xí)的無編程材料在線設(shè)計流程。

材料預(yù)測和設(shè)計:無需編程的AI平臺!

Fig. 2 | Flowcharts of materials design inMLMD platform.

MLMD平臺包含了三個主要的材料設(shè)計流程:模型推理、代理優(yōu)化和主動學(xué)習(xí)。模型推理和代理優(yōu)化的效率取決于預(yù)測模型的魯棒性,而模型性能則受限于可用數(shù)據(jù)的質(zhì)量。在代理優(yōu)化中,訓(xùn)練好的預(yù)測模型被集成到隨機優(yōu)化算法中,以加速材料設(shè)計。主動學(xué)習(xí)模塊利用貝葉斯理論,平衡探索和開發(fā),以制定最優(yōu)的材料設(shè)計策略,推薦當(dāng)前最優(yōu)的材料參數(shù)。針對推薦參數(shù)開展新的實驗或計算,不僅可以驗證ML預(yù)測,還為數(shù)據(jù)集提供新數(shù)據(jù),用于主動學(xué)習(xí)新一輪循環(huán)。

材料預(yù)測和設(shè)計:無需編程的AI平臺!

Fig. 3 | Cross-validation results of six ML models through classification module?within our MLMD platform.

MLMD平臺通過對6類材料數(shù)據(jù)開展的示例性研究顯示,平臺可以僅通過鼠標(biāo)點擊式操作的方式,完成材料的性能預(yù)測和優(yōu)化設(shè)計。例如,在代理優(yōu)化模塊中,作者使用MLMD成功地設(shè)計出在300?℃環(huán)境下強塑性優(yōu)異的RAFM鋼,其中抗拉強度723.1 MPa,總伸長率20.7%,抗拉強度與初始數(shù)據(jù)集相比提高了12.5%,總伸長率提高了41.4%。并且通過簡單的超參數(shù)設(shè)置,可發(fā)現(xiàn)位于Pareto邊界上的其他具有優(yōu)異特性的材料,根據(jù)具體要求應(yīng)用于多種場景。在主動學(xué)習(xí)模塊中,作者基于自研的主動學(xué)習(xí)庫(Bgolearn),使用了EI,REIUCB等效能函數(shù)對高硬度的AlCoCrCuFeNi高熵合金進(jìn)行了成分設(shè)計,所得的成分與原始工作中的成分相近,并提供了更多候選成分。

材料預(yù)測和設(shè)計:無需編程的AI平臺!
Fig. 4 The atomic percentage distribution of novel AlCoCrCuFeNi HEAs designed through active learning module in MLMD.
MLMD平臺致力于將材料試驗/計算與設(shè)計相結(jié)合,為科研人員提供前沿的機器學(xué)習(xí)工具,能夠無編程利用材料信息理念下的材料設(shè)計流程,加速發(fā)現(xiàn)一種或者多種優(yōu)異特性的新材料,MLMD有潛力成為科研人員在材料研發(fā)中不可或缺的工具,推動材料信息學(xué)的發(fā)展。本文共同第一作者是上海大學(xué)博士生馬家軒和香港科技大學(xué)(廣州)博士生曹斌,上海大學(xué)孫升研究員和熊杰助理研究員為共同通訊作者。相關(guān)論文近期發(fā)布于npj?Computational Materials?10:?59 (2024)。手機閱讀原文,請點擊本文底部左下角閱讀原文,進(jìn)入后亦可下載全文PDF文件。
材料預(yù)測和設(shè)計:無需編程的AI平臺!

Fig. 5 | The RAFM steels design process through surrogate optimization module?in MLMD.

Editorial Summary

To predict and design materials: A programming-free AI platform?

Improving the efficiency of materials discovery is crucial for advancing modern industry. However, researchers often face challenges in navigating complex experimental processes, which can be time-consuming and labor-intensive. The emergence of artificial intelligence (AI) offers a promising solution to streamline this process. Despite numerous AI tools and platforms developed for materials science, they often have limitations, such as focusing solely on property prediction and being difficult to use without programming expertise, especially when dealing with limited data sets.

材料預(yù)測和設(shè)計:無需編程的AI平臺!

Fig. 6 | The atomic percentage distribution of novel AlxCoyCrzCuuFevNiw HEAs?designed by Wen and MLMD.

A research team led by Prof. Tong-Yi Zhang from the Materials Genome Institute at Shanghai University has developed a programming-free AI platform called MLMD for materials design. This platform enables materials design by optimizing single or multiple properties through high-throughput screening and/or surrogate optimization. The challenge of limited data was overcome by leveraging active learning with Bayesian methods and surrogate optimization based on transfer learning.

Using the surrogate optimization module, the work successfully designed an advanced RAFM steel with an ultimate tensile strength (UTS) of 723.1 MPa and a total elongation (TE) of 20.7%. These properties represent improvements of 12.5% for UTS and 41.4% for TE compared to the original dataset. The MLMD platform can also identify other advanced materials on the Pareto frontier by adjusting hyperparameters. These new materials can be tailored for specific applications.

Within the active learning module, the team has developed a tool called Bgolearn, which is specifically designed for materials design. Using this tool, they have discovered a high-hardness AlCoCrCuFeNi alloy (HEAs) with a composition similar to that of previous work. This finding demonstrates the effectiveness of their approach in identifying new materials with desired properties.

MLMD is designed to integrate materials experimentation/computation with AI-driven design, providing researchers with a cutting-edge tool for programming-free materials discovery. This platform can accelerate the identification of new materials with specific or multiple properties. MLMD is poised to become an indispensable resource for materials scientists and will significantly advance the field of materials informatics.

The first authors of this study are Jiaxuan Ma from Shanghai University and Bin Cao from Hong Kong University of Science and Technology (Guangzhou). The corresponding authors are Prof. Sheng Sun and Assistant Professor Jie Xiong, both from Shanghai University.

This article was recentlypublished in npj Computational Materials 10: 59 (2024).

原文Abstract及其翻譯

MLMD: A programming-free AI platform to predict and design materials (MLMD:一個無需編程的AI平臺,用于材料性能預(yù)測和材料設(shè)計)

Jiaxuan Ma, Bin Cao, Shuya Dong, Yuan Tian, Menghuan Wang, Jie Xiong, & Sheng Sun?

Abstract Accelerating the discovery of advanced materials is crucial for modern industries, aerospace, biomedicine, and energy. Nevertheless, only a small fraction of materials are currently under experimental investigation within the vast chemical space. Materials scientists are plagued by time-consuming and labor-intensive experiments due to lacking efficient material discovery strategies. Artificial intelligence (AI) has emerged as a promising instrument to bridge this gap. Although numerous AI toolkits or platforms for material science have been developed, they suffer from many shortcomings. These include primarily focusing on material property prediction and being unfriendly to material scientists lacking programming experience, especially performing poorly with limited data. Here, we developed MLMD, an AI platform for materials design. It is capable of effectively discovering novel materials with high-potential advanced properties end-to-end, utilizing model inference, surrogate optimization, and even working in situations of data scarcity based on active learning. Additionally, it integrates data analysis, descriptor refactoring, hyper-parameters auto-optimizing, and properties prediction. It also provides a web-based friendly interface without need programming and can be used anywhere, anytime. MLMD is dedicated to the integration of material experiment/computation and design, and accelerate the new material discovery with desired one or multiple properties. It demonstrates the strong power to direct experiments on various materials (perovskites, steel, high-entropy alloy, etc). MLMD will be an essential tool for materials scientists and facilitate the advancement of materials informatics.

摘要先進(jìn)材料的加速研發(fā)對包括航空航天、生物醫(yī)藥和能源問題在內(nèi)的現(xiàn)代工業(yè)發(fā)展至關(guān)重要。然而材料研發(fā)的搜索空間巨大,所研發(fā)的材料占比極小。材料科學(xué)家們常常因為缺乏高效的新材料發(fā)現(xiàn)策略而陷入費時費力的試驗過程。人工智能(AI)技術(shù)有望成為突破這一壁壘的關(guān)鍵工具,展現(xiàn)出巨大潛力。盡管目前已經(jīng)出現(xiàn)了多個針對材料科學(xué)的AI工具包和平臺,但它們?nèi)源嬖诓簧倬窒扌裕邕^分側(cè)重于材料性能的預(yù)測、對沒有編程背景的材料研究人員不夠友好,以及在數(shù)據(jù)量較少的情況下表現(xiàn)不盡人意等。為了解決這些問題,我們開發(fā)了MLMD——一個專注于材料設(shè)計的AI平臺。MLMD整合了模型推理和代理優(yōu)化技術(shù),能夠在數(shù)據(jù)稀缺的環(huán)境中通過主動學(xué)習(xí)和遷移學(xué)習(xí)的方法進(jìn)行材料設(shè)計,能夠高效地發(fā)掘性能優(yōu)越的新材料。此外,MLMD還具有數(shù)據(jù)分析、描述符重構(gòu)、超參數(shù)自動優(yōu)化和性能預(yù)測等多項功能,提供了一個用戶友好的、無需編程的Web界面。MLMD致力于將材料試驗/計算與設(shè)計相結(jié)合,對各類材料(如鈣鈦礦、鋼、高熵合金等)均具有強大的試驗指導(dǎo)能力。我們堅信它將成為材料研究人員的重要工具,推動材料信息學(xué)的發(fā)展。

原創(chuàng)文章,作者:計算搬磚工程師,如若轉(zhuǎn)載,請注明來源華算科技,注明出處:http://m.xiubac.cn/index.php/2024/03/30/b91a2b074f/

(0)

相關(guān)推薦

丹阳市| 泸溪县| 新巴尔虎右旗| 隆子县| 博野县| 津南区| 凤庆县| 南城县| 西宁市| 北安市| 湄潭县| 乌鲁木齐县| 镶黄旗| 花垣县| 渝北区| 盐亭县| 清丰县| 瑞昌市| 延寿县| 伊川县| 湖州市| 皋兰县| 虞城县| 枣强县| 仲巴县| 锡林浩特市| 大厂| 庆元县| 凤庆县| 阿拉善右旗| 绿春县| 佛坪县| 伊通| 白水县| 丰镇市| 江阴市| 溆浦县| 吴江市| 伊宁市| 宜川县| 蕉岭县|