国产三级精品三级在线观看,国产高清无码在线观看,中文字幕日本人妻久久久免费,亚洲精品午夜无码电影网

自適應(yīng)有限差分:高精度電子結(jié)構(gòu)計算

密度泛函理論(DFT)能夠?qū)Σ牧闲再|(zhì)進行精確的從頭預(yù)測,解釋廣泛的實驗數(shù)據(jù)。DFT預(yù)測的可靠性催生了材料基因組工程,通過DFT計算篩選大量可能的材料組分和結(jié)構(gòu),以確定那些具有優(yōu)異性能的材料,進而用于實驗合成與評估。

自適應(yīng)有限差分:高精度電子結(jié)構(gòu)計算
Fig. 1 Truncation errors in finite difference operators.

然而,全精度DFT計算在計算成本上可能相當昂貴,特別是對于復(fù)雜結(jié)構(gòu)或者多組分系統(tǒng),而且計算方法和程序的選擇通常涉及計算精度和實用性之間的權(quán)衡。幸運的是,幾種廣泛使用的DFT程序產(chǎn)生的結(jié)果彼此一致,且已有元素周期表中大量元素的高精度計算作為基準。然而,對于更加復(fù)雜的系統(tǒng)或者大型調(diào)查研究,權(quán)衡依然存在,需要在計算成本、精確度、甚至是計算方法的選擇之間尋求折中。

自適應(yīng)有限差分:高精度電子結(jié)構(gòu)計算
Fig. 2 Orbital and discretization errors in real space and reciprocal G space.

來自美國北卡羅來納州立大學物理系的E. L. Briggs等,描述了一種利用實空間網(wǎng)格求解DFT方程的方法。通過使用自適應(yīng)有限差分對動能算符離散化,可以使實空間的結(jié)果與基于平面波的程序相符。在顯著減少網(wǎng)格密度的同時,能夠以基于平面波的程序和全電子程序的精度復(fù)現(xiàn)基準DFT結(jié)果。

自適應(yīng)有限差分:高精度電子結(jié)構(gòu)計算
Fig. 3 Δ value comparison for the 8th order adaptive and 12th?order standard operators.

這一改進的離散化方案能夠顯著降低高精度實空間計算的成本,同時兼具實空間方法的優(yōu)勢,易于在多個節(jié)點上并行計算,而且避免了需要跨節(jié)點全局通信的快速傅里葉變換算法的使用。研究者對71種元素進行了著名的Δ測試,用于評估自適應(yīng)動能算符在電子結(jié)構(gòu)計算中的準確性,其平均誤差與成熟的平面波程序相同。通過對NiO和具有一系列復(fù)雜成鍵排列的十水硼砂進行多物種測試,進一步確定了自適應(yīng)算符的準確性。

自適應(yīng)有限差分:高精度電子結(jié)構(gòu)計算

Fig. 4 Differences in total energies between the reference energy obtained using Quantum Espresso and RMG, and timings.

作者通過對含有2016個原子的NiO超晶胞進行高精度計算,證實了實空間網(wǎng)格方法的可擴展性。該文近期發(fā)布于npj Computational Materials 10: 17 (2024).

自適應(yīng)有限差分:高精度電子結(jié)構(gòu)計算

Fig. 5 Scaling of the 2,016-atom NiO high-accuracy calculations?with adaptive (AFD) and standard (SFD) finite difference?operators with the number of Frontier nodes.

Editorial Summary

Adaptive finite differencing: High accuracy electronic structure calculations

Density functional theory (DFT) has enabled accurate, ab initio predictions of material properties and explanations of a wide range of experimental data. The reliability of DFT predictions has led to materials-genome-type projects, in which a large set of possible material compositions and structures are screened by DFT calculations in order to identify those with promising properties. Those with the most potential are then suggested or selected for experimental synthesis and evaluation. However, full-precision DFT calculations can be computationally expensive, especially if complex structures or multi-component systems are involved, and the choice of approach and code often involves a tradeoff between computational accuracy and practicality. Fortunately, the methodology has advanced to the point where the results of several widely-used DFT codes agree well with each other and a set of benchmark high-precision calculations for a large set of elements across the periodic table. However, the tradeoffs remain for more complex systems or large survey studies, requiring practical compromises between the computational expense, accuracy, and even the choice of the computational method.?

E. L. Briggs et al. from the Department of Physics, North Carolina State University, described an approach that uses real-space grids to solve DFT equations. By using adaptive finite differencing to discretize the kinetic energy operator, the real-space results agree with those of plane-wave-based codes using much lower grid densities than those previously required and reproducing the benchmark DFT results at the same accuracy level as those of plane-wave-based and all-electron codes. The improved discretization enables high-precision real-space calculations at a substantially reduced cost while leveraging the well-known advantages of real-space methods of easy parallelization across many nodes, and avoiding the use of Fast Fourier Transform algorithms, which require global communication across nodes. The authors tested the accuracy of this adaptive kinetic energy operator in electronic structure calculations using the well-known Δ test for 71 elements, and the average error of the calculations is the same as those of the well-established plane-wave codes. The accuracy of the adaptive operator was further established with multi-species tests on NiO and borax decahydrate, which exhibit a range of complex bonding arrangements. The scalability of real-space grid methodology was then confirmed in highly accurate calculations for a 2,016-atom NiO supercell.

This article was recently published in npj Computational Materials 10: 17 (2024).

原文Abstract及其翻譯

Adaptive finite differencing in high accuracy electronic structure calculations?(高精度電子結(jié)構(gòu)計算中的自適應(yīng)有限差分)

E. L. Briggs,Wenchang Lu?&?J. Bernholc?

Abstract A multi-order Adaptive Finite Differencing (AFD) method is developed for the kinetic energy operator in real-space, grid-based electronic structure codes. It uses atomic pseudo orbitals produced by the corresponding pseudopotential codes to optimize the standard finite difference (SFD) operators for improved precision. Results are presented for a variety of test systems and Bravais lattice types, including the well-known Δ test for 71 elements in the periodic table, the Mott insulator NiO, and borax decahydrate, which contains covalent, ionic, and hydrogen bonds. The tests show that an 8th-order AFD operator leads to the same average Δ value as that achieved by plane-wave codes and is typically far more accurate and has a much lower computational cost than a 12th-order SFD operator. The scalability of real-space electronic calculations is demonstrated for a 2016-atom NiO cell, for which the computational time decreases nearly linearly when scaled from 18 to 144 CPU-GPU nodes.

摘要本文開發(fā)了一種多階自適應(yīng)有限差分(AFD)方法,用于基于實空間網(wǎng)格電子結(jié)構(gòu)程序中的動能算符。該方法使用相應(yīng)的贗勢代碼產(chǎn)生的原子贗軌道來優(yōu)化標準有限差分(SFD)算符,以提高精度。我們給出了各種測試系統(tǒng)和布拉維晶格類型的結(jié)果,包括對元素周期表中71種元素,莫特絕緣體NiO,以及包含共價鍵、離子鍵和氫鍵的十水硼砂,進行了著名的Δ測試。測試結(jié)果表明,8AFD算符的平均Δ值與基于平面波的程序相同,且比12SFD算符更加精確、計算成本更低。我們使用含有2016個原子的NiO晶胞證明了實空間電子計算的可擴展性,當CPU-GPU節(jié)點從18擴展到144時,計算時間幾乎呈線性下降。

原創(chuàng)文章,作者:計算搬磚工程師,如若轉(zhuǎn)載,請注明來源華算科技,注明出處:http://m.xiubac.cn/index.php/2024/03/23/0ae1b333ac/

(0)

相關(guān)推薦

长治市| 贺州市| 宁夏| 金寨县| 济宁市| 兴国县| 奉化市| 光山县| 宝坻区| 大同市| 柳林县| 沧州市| 石嘴山市| 武强县| 绥化市| 五河县| 富蕴县| 沙湾县| 荃湾区| 滕州市| 白水县| 闽侯县| 永福县| 黔东| 广东省| 乌什县| 顺义区| 漠河县| 绥宁县| 梅州市| 泽库县| 固始县| 化德县| 遂宁市| 临汾市| 新津县| 高青县| 乌什县| 襄城县| 南木林县| 阜新市|