国产三级精品三级在线观看,国产高清无码在线观看,中文字幕日本人妻久久久免费,亚洲精品午夜无码电影网

編委Ceder G發(fā)明:一種新型高效材料相態(tài)檢測方法

X射線衍射技術(shù)是一種常用的材料學(xué)特征分析方法,對于材料的相態(tài)鑒定十分重要。但是,傳統(tǒng)的X射線衍射技術(shù)需要手動選取參數(shù)并進行掃描,效率較低,而且一些材料可能會因為相變或者形變而改變衍射譜,造成誤判。因此,研究如何使得X射線衍射技術(shù)更智能化、高效化,對于提高材料相態(tài)鑒定的精度和速度具有重要意義。
編委Ceder G發(fā)明:一種新型高效材料相態(tài)檢測方法

Fig. 1 A schematic for adaptively driven XRD with autonomous phase identification

由美國加州大學(xué)伯克利分校材料科學(xué)與工程系的Gerbrand Ceder教授(本刊編委)領(lǐng)導(dǎo)的團隊,在基于卷積神經(jīng)網(wǎng)絡(luò)的ML算法的驅(qū)動下,制定了一種用于自主相位識別的自適應(yīng)引導(dǎo)XRD技術(shù)。不確定性量化用于決定何時需要額外的測量,而類激活映射分析則表明在何處執(zhí)行這些測量。
編委Ceder G發(fā)明:一種新型高效材料相態(tài)檢測方法
Fig. 2 F1-scores achieved by XRD-AutoAnalyzer when applied to simulated patterns in the (top) Li-La-Zr-O and (bottom) Li-Ti-P-O spaces.
基于Li-La-Zr-OLi-Ti-P-O化學(xué)空間的材料,該方法在三個復(fù)雜程度不斷增加的測試案例中得到了驗證。這些測試表明,自適應(yīng)XRD在模擬和實驗獲得的圖像上始終優(yōu)于傳統(tǒng)方法,并可以提供更精確的雜質(zhì)相檢測,同時測量時間更短。作者進一步證明,該ML方法可以有效地指導(dǎo)XRD測量,以Li7La3Zr2O12LLZO)的合成為例,改善固相反應(yīng)的原位表征。使用自適應(yīng)掃描來監(jiān)測LLZO的合成,成功地識別了一個短壽命的中間相,而傳統(tǒng)測量通常漏掉了這種中間相的表征。
編委Ceder G發(fā)明:一種新型高效材料相態(tài)檢測方法
Fig. 3 Detection rates and measurement times required for impurity detection
這些發(fā)現(xiàn)為動態(tài)過程的自適應(yīng)表征提供了一個清晰的概念證明,突出了由ML驅(qū)動的自主實驗的機會。該文近期發(fā)表于npj Computational Materials??9: 31 (2022).
編委Ceder G發(fā)明:一種新型高效材料相態(tài)檢測方法
Fig. 4 In situ identification of phases formed during LLZO synthesis.
Editorial Summary

A?novel and efficient method for phase detection of materials

X-ray diffraction technique is a commonly used material science characterization method, which is important for phase identification of materials. However, the traditional X-ray diffraction technique requires manual selection of parameters and scanning, which is inefficient, and some materials may change the diffraction spectrum due to phase change or deformation, resulting in misclassification. Therefore, it is important to study how to make the X-ray diffraction technique more intelligent and efficient to improve the accuracy and speed of material phase identification.?
A team lead by Prof. Gerbrand Ceder from Department of Materials Science & Engineering, UC Berkeley, USA, formulated an adaptively steered XRD technique for autonomous phase identification, driven by an ML algorithm based on a convolutional neural network. Uncertainty quantification is used to decide when additional measurements are needed, while class activation map analysis dictates where those measurements are performed. This approach is validated it on three test cases with increasing complexity based on materials from the Li-La-Zr-O and Li-Ti-P-O chemical spaces. These tests reveal that adaptive XRD consistently outperforms conventional methods on both simulated and experimentally acquired patterns, providing more precise detection of impurity phases while requiring shorter measurement times. The authors further demonstrate that the ML approach can effectively guide XRD measurements for improved in situ characterization of solid-state reactions, with the synthesis of Li7La3Zr2O12 (LLZO) considered as an example. The use of adaptive scans to monitor LLZO synthesis led to the successful identification of a short-lived intermediate phase that would otherwise be missed by conventional measurements.?
These findings provide a clear proof of concept for adaptive characterization of dynamic processes, highlighting the opportunity for autonomous experiments driven by ML.?This article was recently published in npj Computational Materials 9: 31 (2022).
原文Abstract及其翻譯
Adaptively driven X-ray diffraction guided by machine learning for autonomous phase identification (由機器學(xué)習指導(dǎo)的自適應(yīng)驅(qū)動X射線衍射的自主相位識別)
Nathan J. Szymanski,?Christopher J. Bartel,?Yan Zeng,?Mouhamad Diallo,?Haegyeom Kim?&?Gerbrand Ceder?
Abstract?Machine learning (ML) has become a valuable tool to assist and improve materials characterization, enabling automated interpretation of experimental results with techniques such as X-ray diffraction (XRD) and electron microscopy. Because ML models are fast once trained, there is a key opportunity to bring interpretation in-line with experiments and make on-the-fly decisions to achieve optimal measurement effectiveness, which creates broad opportunities for rapid learning and information extraction from experiments. Here, we demonstrate such a capability with the development of autonomous and adaptive XRD. By coupling an ML algorithm with a physical diffractometer, this method integrates diffraction and analysis such that early experimental information is leveraged to steer measurements toward features that improve the confidence of a model trained to identify crystalline phases. We validate the effectiveness of an adaptive approach by showing that ML-driven XRD can accurately detect trace amounts of materials in multi-phase mixtures with short measurement times. The improved speed of phase detection also enables in situ identification of short-lived intermediate phases formed during solid-state reactions using a standard in-house diffractometer. Our findings showcase the advantages of in-line ML for materials characterization and point to the possibility of more general approaches for adaptive experimentation.
摘要 機器學(xué)習(ML)已成為協(xié)助和改善材料表征的寶貴工具,能夠通過X射線衍射(XRD)和電子顯微鏡等技術(shù)自動解釋實驗結(jié)果。由于ML模型一旦訓(xùn)練好就會很快,因此有一個關(guān)鍵機會可將解釋與實驗結(jié)合起來,并即時做出決策以實現(xiàn)最佳測量效果,這為快速學(xué)習和從實驗中提取信息創(chuàng)造了廣泛的機會。在這里,我們通過開發(fā)自主和自適應(yīng)XRD來證明這種能力。通過將ML算法與物理衍射儀耦合,該方法集成了衍射和分析過程,以便利用早期的實驗信息來引導(dǎo)測量,最終提高訓(xùn)練以識別晶體相模型的置信度。我們通過證明ML驅(qū)動的XRD可以在較短的測量時間內(nèi)準確檢測出多相混合物中的微量材料,驗證了自適應(yīng)方法的有效性。相檢測速度的提高也使我們能夠使用標準的內(nèi)部衍射儀在固態(tài)反應(yīng)中形成的短壽命中間相進行原位識別。我們的研究結(jié)果展示了內(nèi)聯(lián)ML在材料表征方面的優(yōu)勢,并指出了更通用的自適應(yīng)實驗方法的可能性。

原創(chuàng)文章,作者:計算搬磚工程師,如若轉(zhuǎn)載,請注明來源華算科技,注明出處:http://m.xiubac.cn/index.php/2024/03/18/7ef37edd99/

(0)

相關(guān)推薦

乌兰浩特市| 合江县| 乐平市| 湄潭县| 武冈市| 迭部县| 图木舒克市| 重庆市| 台东市| 偏关县| 瓦房店市| 金坛市| 许昌县| 黄骅市| 黄冈市| 吉木乃县| 百色市| 特克斯县| 龙游县| 三台县| 巨野县| 阿坝| 历史| 新和县| 绿春县| 贵南县| 乌什县| 蒲城县| 密山市| 东阳市| 吴忠市| 县级市| 凯里市| 土默特右旗| 新郑市| 北辰区| 诏安县| 色达县| 腾冲县| 五指山市| 廉江市|