国产三级精品三级在线观看,国产高清无码在线观看,中文字幕日本人妻久久久免费,亚洲精品午夜无码电影网

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)

鈦合金因其卓越的性能和廣泛應(yīng)用,對(duì)其α/β微觀結(jié)構(gòu)的優(yōu)化至關(guān)重要。界面能量是影響合金性能的關(guān)鍵,但直接測(cè)定其值極具挑戰(zhàn)。新興技術(shù),包括熱力學(xué)積分和基于DFT數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)已使得界面能量的精確計(jì)算成為可能,進(jìn)而推動(dòng)了材料設(shè)計(jì)和性能優(yōu)化的新篇章。

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)

Fig. 1 Temperature dependences of the lattice constants and free?energies of bulk α and β phases.

由香港城市大學(xué)材料科學(xué)與工程系的Jian Han教授領(lǐng)導(dǎo)的團(tuán)隊(duì),采用分子動(dòng)力學(xué)、熱力學(xué)積分以及經(jīng)過密度泛函理論(DFT)訓(xùn)練的深度學(xué)習(xí)勢(shì)模型,深入探討了鈦材料中α/β界面(即和))的結(jié)構(gòu)和熱力學(xué)特性。

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)
Fig. 2 Schematic of the model for simulating coherent α/βinterfaces.

研究首先集中于分析鈦的相干α/β界面的熱力學(xué)性質(zhì),并考察其如何受到應(yīng)變和溫度的影響。隨后,團(tuán)隊(duì)對(duì)半相干界面的結(jié)構(gòu)和屬性進(jìn)行了細(xì)致審查,并將這些發(fā)現(xiàn)用于理解β基體中α析出相的成核及生長(zhǎng)過程,也就是從高溫狀態(tài)開始的冷卻過程。

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)

Fig. 3 Temperature dependence of coherent α/β interface free?energy.

該論文的關(guān)鍵發(fā)現(xiàn)包括:(1)成功預(yù)測(cè)了鈦中最關(guān)鍵界面(相干和半相干)的自由能,這是首次以接近DFT精確度進(jìn)行此類計(jì)算(值得注意的是,β相在0K下完全不穩(wěn)定,因而在沒有人為約束的情況下DFT無法直接計(jì)算);(2)模擬結(jié)果展示了半相干界面的平衡結(jié)構(gòu)和本質(zhì)的缺陷結(jié)構(gòu),這些結(jié)構(gòu)解釋了習(xí)慣面的普遍存在;(3)揭示了界面遷移的作用機(jī)理,并指出這一機(jī)理在不同方向(比如升溫與降溫)會(huì)導(dǎo)致界面遷移速率的不同;(4)這些精確的熱力學(xué)和結(jié)構(gòu)數(shù)據(jù)被用于可靠預(yù)測(cè)α-β相變冷卻過程中析出相的形成。

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)
Fig. 4 The α/β equilibrium temperature and coherent interface free energy under different strain states.

此項(xiàng)研究不僅為準(zhǔn)確預(yù)測(cè)界面屬性和運(yùn)動(dòng)提供了指導(dǎo),還為理解和預(yù)測(cè)包括在低溫下不穩(wěn)定的相和相干性喪失情況下的析出行為提供了實(shí)用的參考。該文近期發(fā)表于npj Computational Materials 9: 216 (2023)。

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)

Fig. 5 Schematic of the model for simulating semicoherent α/β?interfaces.

Editorial Summary

Deep potential: Structure and thermodynamic properties of titanium alloy interfaces

Titanium alloys, renowned for their exceptional performance and wide-ranging applications, require optimization of their α/β microstructure for enhanced properties. The key to alloy performance, interface energy, presents significant measurement challenges. Emerging technologies, including thermodynamic integration and neural network models trained on DFT data, now enable precise calculations of interface energy, thereby opening a new chapter in material design and performance optimization.

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)

Fig. 6 Semicoherent interface structure.

A team led by Prof. Jian Han from Department of Materials Science and Engineering, City University of Hong Kong, investigated the structure and thermodynamics of the α/β interface in Ti using molecular dynamics, thermodynamic integration and a DFT-trained Deep Potential.?

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)
Fig. 7 Disconnection lines in a semicoherent interface.?

The authors first focus on the thermodynamic properties of the coherent α/β interface in titanium (i.e., ?and ) as a function of strain and temperature. Next, the authors examine the structure and properties of the semicoherent interface. This information is then applied to understand the nucleation and growth of α precipitates in a β matrix (i.e., cooling from high temperature).?

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)
Fig. 8 Energy composition of a semicoherent interface.

The main findings in this paper are as follows. (i) The authors predict the free energy of the most important interfaces (coherent and semicoherent) in titanium. This represents the first such calculations with DFT-level accuracy (note that β phase is completely unstable at 0 K and hence inaccessible to DFT without artificial constraints). (ii) The simulations show the equilibrium structure of the semicoherent interface and its intrinsic defect structure that gives rise to the widely-observed habit plane. (iii) The authors demonstrate the mechanism of interface migration and that this mechanism gives rise to different interface mobilities in different directions (heating vs. cooling). (iv) These accurate thermodynamic and structural results are applied to make reliable predictions on how precipitation occurs upon cooling through the α-β phase transition.?

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)

Fig. 9 Nucleation of α phase from β phase.

This paper provides a roadmap for accurate prediction of interface properties and motion as well as precipitation in any system, including in systems with phases that are unstable at low temperature and in systems where loss of coherency occurs.?This article was recently published in npj Computational Materials 9: 216 (2023).

鈦合金界面結(jié)構(gòu)與熱力學(xué)性質(zhì):深度學(xué)習(xí)
Fig. 10 Semicoherent α/β interface migration.

原文Abstract及其翻譯

Coherent and semicoherentα/β?interfaces in titanium: structure, thermodynamics, migration (鈦中的相干與半相干α/β界面:結(jié)構(gòu)、熱力學(xué)及遷移特性)

Siqi Wang,?Tongqi Wen,?Jian Han?&?David J. Srolovitz?

Abstract?

Theα/β?interface is central to the microstructure and mechanical properties of titanium alloys. We investigate the structure, thermodynamics and migration of the coherent and semicoherent Ti?α/β?interfaces as a function of temperature and misfit strain via molecular dynamics (MD) simulations, thermodynamic integration and an accurate, DFT-trained Deep Potential. The structure of an equilibrium semicoherent interface consists of an array of steps, an array of misfit dislocations, and coherent terraces. Analysis determines the dislocation and step (disconnection) array structure and habit plane. The MD simulations show the detailed interface morphology dictated by intersecting disconnection arrays. The steps are shown to facilitate?α/β?interface migration, while the misfit dislocations lead to interface drag; the drag mechanism is different depending on the direction of interface migration. These results are used to predict the nature of?α?phase nucleation on cooling through the?αβ?phase transition.

摘要

α/β界面是影響鈦合金微觀結(jié)構(gòu)和力學(xué)性質(zhì)的關(guān)鍵因素。在本研究中,我們利用分子動(dòng)力學(xué)模擬、熱力學(xué)積分方法,以及基于密度泛函理論訓(xùn)練的高精度深度學(xué)習(xí)勢(shì)能模型,詳細(xì)探討了溫度和失配應(yīng)變條件下鈦的相干與半相干α/β界面的結(jié)構(gòu)、熱力學(xué)性質(zhì)以及遷移行為。研究發(fā)現(xiàn),一個(gè)處于平衡狀態(tài)的半相干界面由一系列臺(tái)階、失配位錯(cuò)以及相干的平臺(tái)構(gòu)成。通過分析,我們確定了界面上位錯(cuò)和臺(tái)階(斷連)的陣列結(jié)構(gòu)及其習(xí)慣面。分子動(dòng)力學(xué)模擬揭示了由斷連陣列交互作用形成的復(fù)雜界面形態(tài)。研究表明,臺(tái)階結(jié)構(gòu)促進(jìn)了α/β界面的遷移,而失配位錯(cuò)則產(chǎn)生了對(duì)界面遷移的阻力,具體的阻力機(jī)制取決于界面遷移的具體方向。這些發(fā)現(xiàn)幫助我們預(yù)測(cè)了在α-β相轉(zhuǎn)變冷卻過程中α相成核的特性。

原創(chuàng)文章,作者:計(jì)算搬磚工程師,如若轉(zhuǎn)載,請(qǐng)注明來源華算科技,注明出處:http://m.xiubac.cn/index.php/2024/02/15/51c9423bfe/

(0)

相關(guān)推薦

贵阳市| 奉节县| 孝感市| 和林格尔县| 攀枝花市| 广宁县| 昌江| 交城县| 宜宾县| 清远市| 都江堰市| 札达县| 温州市| 邹城市| 子洲县| 贵南县| 瑞丽市| 温泉县| 刚察县| 历史| 罗山县| 武安市| 贺州市| 泰来县| 信丰县| 甘德县| 江阴市| 太康县| 秭归县| 岳阳市| 锡林郭勒盟| 邵阳县| 黄山市| 托克托县| 盱眙县| 乌苏市| 会东县| 东阳市| 志丹县| 太仓市| 望谟县|