国产三级精品三级在线观看,国产高清无码在线观看,中文字幕日本人妻久久久免费,亚洲精品午夜无码电影网

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?

可見(jiàn)光催化CO2還原制高附加值化學(xué)品是一種極具吸引力且環(huán)保的方法,不僅解決能源短缺問(wèn)題,同時(shí)減少二氧化碳排放。然而,目前這種人工光還原CO2的效率,遠(yuǎn)遠(yuǎn)達(dá)不到工業(yè)上大規(guī)模生產(chǎn)的要求。在多相催化中,一般一個(gè) CO2 分子只能被一個(gè)催化位點(diǎn)活化。

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?
Fig. 1 Calculation of stability.

因此,制備C2等多碳化學(xué)品,需要相鄰多位點(diǎn)間協(xié)同作用。因此,由于有限的還原能力和活性位的高度分散性,單位點(diǎn)催化劑(例如:?jiǎn)卧哟呋瘎┯|發(fā)C-C偶聯(lián)顯得非常具有挑戰(zhàn)性。該研究基于從頭算非絕熱分子動(dòng)力學(xué)模擬發(fā)現(xiàn)了:光照下單一催化位點(diǎn)發(fā)生有趣的雙重活化(熱致活化和光致活化)CO2分子,并誘導(dǎo)C-C偶聯(lián)生成高附加值C2H6。

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?

Fig. 2 Optical properties.

來(lái)自浙江工業(yè)大學(xué)化工學(xué)院工業(yè)催化研究所莊桂林教授團(tuán)隊(duì)針對(duì)光催化CO2還原反應(yīng)(如本文壓題圖)成功地設(shè)計(jì)了一種穩(wěn)定且高效的單原子催化劑Ti@C4N3,并提出了單位點(diǎn)雙重活化的概念。即該研究發(fā)現(xiàn)負(fù)載高價(jià)態(tài)Ti4+C4N3載體,打開(kāi)能帶發(fā)生導(dǎo)體到半導(dǎo)體轉(zhuǎn)變,形成具有平帶特征且由Ti-3d態(tài)組成導(dǎo)帶底(CBM,這種高度局域的CBM有效提高光生電子從活性位到反應(yīng)底物的傳輸效率和壽命( 38.21 ps )。

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?

Fig. 3 Activation mechanism of CO2 molecules. Optimised

進(jìn)一步原位光照下含時(shí)密度泛函理論(rt-TDDFT)模擬研究(如圖3)揭示:高空速的CO2流過(guò)Ti@C4N3催化劑表面經(jīng)歷了2個(gè)活化過(guò)程:(1) 無(wú)光照時(shí),高Lewis 酸位的Ti通過(guò)給反饋π鍵以熱誘導(dǎo)方式活化一個(gè)CO2, 部分CO2 分子以范德華力作用弱吸附在位點(diǎn)附近。( 2 )可見(jiàn)光照時(shí),催化劑的價(jià)帶附近電子被激發(fā)到導(dǎo)帶上;而CBM上電子態(tài)主要布居在Ti-3d態(tài)上。

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?

Fig. 4 Reaction pathways. Schematic illustration of the possible reaction pathways for CO2RR on Ti@C4N3.

因此某個(gè)弱吸附CO2容易通過(guò)Ti@C4N3CBMTi位點(diǎn)獲得光電子,從而發(fā)生光誘導(dǎo)活化。催化機(jī)理研究表明如圖4,在Ea?= 0.19 eV能壘下,兩個(gè)活性的CO2非常容易偶聯(lián)為草酸鹽,進(jìn)一步經(jīng)過(guò)多步還原高選擇性產(chǎn)生C2H6(?Ea?= 1.09 eV )該研究在CO2雙重活化的發(fā)現(xiàn)將對(duì)可見(jiàn)光催化劑的設(shè)計(jì)提供一種新的思路。相關(guān)論文近期發(fā)布于npj?Computational Materials?9:?220?(2023)

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?

Fig. 5 CO2RR energy barrier and reaction intermediates. Reaction

Editorial Summary

Can a Single Catalytic Site Activate Multiple CO2Molecules in Photocatalysis: One or More?

Visible light catalysis for CO2 reduction to high-Value chemicals is an attractive and environmentally friendly approach, not only addressing energy shortages but also mitigating carbon dioxide emissions. However, the current efficiency of artificial light-driven CO2 reduction falls far short of the requirements for large-scale industrial production. In heterogeneous catalysts, typically, only one CO2 molecule can be activated by one catalytic site. Therefore, the preparation of multi-carbon chemicals, such as C2, requires cooperative interactions between adjacent catalytic sites. Due to limited reduction capacity and the high dispersion of active sites, triggering C-C coupling in single-site catalysts, such as single-atom catalysts, proves to be highly challenging. This study, based on first-principles non-adiabatic molecular dynamics simulations, discovered intriguing dual activation (thermal and photoinduced) and C-C coupling at a single site during the photo-reduction of CO2.?

光照下,1個(gè)催化位點(diǎn)能活化幾個(gè)CO2分子?

Fig. 6 Schematic diagram of two CO2 molecules coupled.

Professor Zhuang Guilin’s team from the Institute of Industrial Catalysis, School of Chemical Engineering, Zhejiang University of Technology, successfully designed a stable and efficient single-atom catalyst, Ti@C4N3, for photocatalytic CO2 reduction, introducing the concept of dual activation at the single site. The study revealed that loading a high-valence Ti4+ onto the C4N3carrier induces a band transition from a conductor to a semiconductor and forms a Ti-3d component with flat-band characteristics, effectively enhancing the efficiency and lifetime of photo-generated electrons (38.21 ps). Real-time time-dependent density functional theory (RT-TDDFT) simulations under in situ light exposure found that, as high-speed CO2 passed over the catalyst surface, two processes occur: (1) Without light, CO2 at the high Lewis acid site Ti activates one CO2 through thermally induced feedback to the π bond, and some CO2 molecules weakly adsorb near the site through van der Waals forces. (2) Under visible light, electrons in the valence band are excited to the catalyst’s CBs; since the electron states on the CBM are mainly localized on the Ti-3d states, a weakly adsorbed CO2 easily gains photogenerated electrons from the Ti@C4N3‘s CBM at the Ti site, leading to photoinduced activation. Mechanistic studies suggest that under a low energy barrier (Ea = 0.19 eV), coupling two active CO2 molecules to form oxalate is highly facile, and oxalate is further selectively reduced to C2H6 (Ea= 1.09 eV). The discovery of dual activation in CO2 opens up new avenues for the design of visible-light catalysts. This research was recently published in npj Computational Materials 9: 220 (2023).

原文Abstract及其翻譯

Dual Activation and C-C Coupling on Single Atom Catalyst for CO2Photoreduction (光照下單原子催化劑雙重活化CO2C-C偶聯(lián))

Fu-li Sun, Cun-biao Lin, Wei Zhang, Qing Chen, Wen-xian Chen, Xiao-nian Li & Gui-lin Zhuang*?

Abstract An excellent single-atomic photocatalyst, Ti@C4N3, is theoretically found to effectively convert CO2 to C2H6by density functional theory (DFT) calculations and non-adiabatic molecular dynamics (NAMD) simulations. The Ti@C4N3 photocatalyst has remarkable stability both thermally, chemically, and mechanically. Electronically, it has strong absorption properties (l= 327.77 and 529.61 nm), suitable band positions, and a long photogenerated electron lifetime (τe= 38.21 ps), allowing photogenerated electrons to migrate to the surface. Notably, the high-valence active site effectively activates two CO2through dual activation: Under light irradiation, the weakly adsorbed CO2undergoes photo-induced activation by the photoelectron of conduction band minimum (CBM); without light, the high Lewis acidity of the Ti site induces CO2activation through back-donating π-bond.Contrast simulation results uncovered that dual activation of CO2is attributed to the thermal and photonic synergy. Furthermore, two activated CO2 species under light easily couple to form oxalate with the barrier of 0.19 eV, and further reduced to C2H6 with a low activation energy of 1.09 eV.

摘要結(jié)合密度泛函理論(DFT)計(jì)算和非絕熱分子動(dòng)力學(xué)(NAMD)模擬結(jié)果發(fā)現(xiàn)了一種優(yōu)異的單原子光催化劑Ti@C4N3可以有效地將CO2轉(zhuǎn)化為C2H6。 Ti@C4N3光催化劑具有顯著的熱穩(wěn)定性、化學(xué)穩(wěn)定性和機(jī)械穩(wěn)定性。在電子性質(zhì)方面,它具有很強(qiáng)的光吸收特性(l = 327.77529.61 nm)、合適的帶邊位置和較長(zhǎng)的光生電子壽命(τe = 38.21 ps),且允許光生電子有效遷移到表面。值得注意的是,高價(jià)態(tài)活性位點(diǎn)通過(guò)雙重模式有效地活化了兩個(gè)CO2分子,即:在光照射下,弱吸附的CO2受到導(dǎo)帶底(CBM)光電子的誘導(dǎo)活化;在無(wú)光照下,Ti位點(diǎn)的高路易斯酸性通過(guò)反饋π鍵誘導(dǎo)CO2活化。對(duì)比模擬結(jié)果發(fā)現(xiàn),CO2的雙重活化歸因于熱能和光子的協(xié)同作用。此外,兩個(gè)被活化的CO2分子在光照下很容易耦合形成草酸鹽,反應(yīng)能壘低至0.19 eV;并進(jìn)一步經(jīng)過(guò)多步還原生成C2H6,且速控步的活化能僅為1.09 eV

原創(chuàng)文章,作者:計(jì)算搬磚工程師,如若轉(zhuǎn)載,請(qǐng)注明來(lái)源華算科技,注明出處:http://m.xiubac.cn/index.php/2023/12/31/c47ca16411/

(0)

相關(guān)推薦

阿拉尔市| 桐梓县| 托克托县| 丰宁| 轮台县| 莆田市| 尤溪县| 勐海县| 宜黄县| 安龙县| 来安县| 宝兴县| 张掖市| 余干县| 江永县| 巴中市| 湖北省| 色达县| 黄冈市| 新化县| 桃源县| 同江市| 安泽县| 修文县| 岳西县| 渝北区| 高清| 荆州市| 丁青县| 广灵县| 德安县| 格尔木市| 郸城县| 焦作市| 恩施市| 万源市| 山丹县| 白银市| 顺平县| 霸州市| 弥勒县|